Kapitel 3 - Das erste FEM-Projekt - Exzenterbolzen mit einer Axialbelastung

(C) 2021 Ing.Büro HTA-Software Maiwaldstraße 24 77866 Rheinau Tel. 07844-98641 <u>www.femcad.de</u> info@femcad.de

Inhaltsverzeichnis:

			Seite
1.	Exzenter	polzen erstellen	2
	1.1 Exakt	es Ergebnis	2
	1.2 CAD-	Modell	2
	1.3 FEM-	Netz generieren	3
	1.4 Lager	ung erzeugen	5
	1.5 Axialb	pelastung	6
	1.6 FEM-	Anaylse	7
	1.6.1	MEANS-Solver	7
	1.6.2	Quick-Solver mit Tetraederelement TET4	8
	1.6.3	Quick-Solver mit Tetraederelement TET4X8	8
	1.6.4	Quick-Solver mit Tetraederelement TET10	8
	1.7 Auswo	ertung der Ergebnisse	9

Fortsetzung

Kapitel 23 - Exzenterbolzen mit eingefügter Bohrung und mit einer Biege- und Torsionsbelastung

1. Exzenterbolzen erstellen

Der Exzenterbolzen besteht aus einem Zylinder mit D=60 mm und L=192 mm der mit einer Axialkraft von 100t an einen Quader mit den Maßen 124 mm x 124 mm x 48 mm angepreßt wird.

1.1 Exaktes Ergebnis

Die Axialspannungen im Zylinder lassen sich mit der Querschnittsfläche A exakt berechnen.

Axialspannung = F_A / A_Z = 1 000 000 N / 3.1416 * D² / 4 = 1 000 000 N * 4 / 3.1416 * 60² mm² = 353.7 N/mm²

1.2 CAD-Modell

Im CAD-System wird der Exzenterbolzen mit einem Zylinder und einem Quader erzeugt. Nach dem Zusammenfügen zu einem Part wird der Exzenterbolzen im STEP-Format abgespeichert.

1.3 FEM-Netz generieren

Starten Sie MEANS V12 mit dem Desktop-Icon und wählen Sie das Register "Datei" und das Menü "Neu" und selektieren "3D-Netzgenerator GMSH (STEP)" um die STEP-Datei "exzenterbolzen.stp" in GMSH einzuladen und zu vernetzen.

O 3D-Netzgenerator NET	TGEN (STEP, K	GES, STL	
③ 3D-Netzgenerator GMS	SH (STEP)		
O Neues FEM-Projekt mit	t Balken-Linien-	Modus ers	tellen
O Neues FEM-Projekt mit	t Behälter-Netzg	enerator	
O Neues FEM-Projekt mit	t Wälzlager-Net	zgenerato	r
O Neues FEM-Projekt mit	t Schrauben-Ne	tzgenerat	or

	C. projekte u	Exzenterbolzen\			Browse
۲) STEP		O STL / AST (ASCII)		Defau
enterb	olzen.step				
	l zuerst Registe	er Mesh aktivier <mark>e</mark> n und 1	Menü 3D und Menü Refine by spl	itting wä	ihlen. Das
MSH				V12 da	irgestellt wi
GMSH tz mit	Menü File/Exp	ort im INP-Abaqus-Form	at exportieren damit es in MEANS		
GMSH tz mit)-Netz	Menü File/Exp generator start	ort im INP-Abaqus-Form en	at exportieren damit es in MEANS		
GMSH tz mit)-Netz	Menü File/Exp generator start	ort im INP-Abaqus-Form en Netzgenerato	at exportieren damit es in MEANS r mit CAD-File starten		1.11

In GMSH wird der Exzenterbolzen zuerst in einem blauen Drahtgitter dargestellt. Wählen Sie im linken Menü zuerst "3D" und anschließend "Refine by splitting" um das FEM-Netz jeweils 8x feiner zu verfeinern. Nach 2 Klicks erhält man ein FEM-Netz mit 31 808 Tetraedern.

Achten Sie auch immer auf die untere Infozeile, wenn keine Tetraeder vernetzt werden können werden "Warnings" und "Errors" angezeigt. In solchen Fällen muß leider GMSH beendet werden und es muß mit NETGEN versucht werden zu vernetzen.

Exportieren Sie nun das generierte FEM-Netz mit Menü "File" und "Export" und wählen das Format "Mesh - Abaqus INP (*.inp)".

G	msh - file	e.stp	
File	Tools	Window	Help
New.	153		Ctrl+N
Open	I		Ctrl+O
Open	Recent		•
Merg	e		Ctrl+Shift+O
Wate	h Patter	n	
Clear			
Rena	me		Ctrl+R
Delet	e		
Remo	ote		•
Save	Mesh		Ctrl+Shift+S
Save	Model C	Options	Ctrl+J
Save	Options	As Defaul	t Ctrl+Shift+J
Expo	rt		Ctrl+E
Quit			Ctrl+Q
	500	NOTH ZU	

Wenn das Netz mit Namen "file" ins gleiche Verzeichnis wieder abgespeichert wird wird es von MEANS V12 automatisch importiert und dargestellt.

Export	Guess From Extension (*.*)
L. L	Geometry - Gmsh Options (*.opt)
	Geometry - Gmsh Unrolled GEO (*.geo_unrolled)
	Geometry - OpenCASCADE BRep (*.brep)
	Geometry - STEP (*.step)
Organisieren 🔻	Mesh - Gmsh MSH (*.msh)
	Mesh - Abaqus INP (*.inp)
Neuer Ord	Mesh - LSDYNA KEY (*.key)
	Mesh - CELUM (*.celum)
Oracle	Mesh - CGNS (Experimental) (*.cgns)
Pack	Mesh - Diffpack 3D (*.diff)
	Mesh - I-deas Universal (*.unv)
PerfLogs	Mesh - Iridum (*.ir3)
ProgramD	Mesh - MED (*.med)
Programo	Mesh - INRIA Medit (*.mesh)
Programm	Mesh - CEA Triangulation (*.mail)
	Mesh - Matlab (*.m)
Programm	Mesh - Nastran Bulk Data File (*.bdf)
projekte	Mesh - Plot3D Structured Mesh (*.p3d)
	Mesh - STL Surface (*.stl)
100t	Mesh - VRML Surface (*.wrl)
heamtert	Mesh - VTK (*.vtk)
Deantest	Mesh - Tochnog (*.dat)
behaelter	Mesh - PLY2 Surface (*.ply2)
	Mesh - SU2 (*.su2)
aino	Mesh - GAMBIT Neutral File (*.neu)
Exzenter	Post-processing - Gmsh POS (*.pos)
	Post-processing - X3D (X3D) (*.x3d)
Dateiname	Post-processing - MED (*.rmed)
Datemanie	Post-processing - Generic TXT (*.txt)
Dateityp:	Guess From Extension (*.*)
 Ordner ausblende 	n

Nach dem GMSH-Export wählen Sie "Neues Flächenmodell erzeugen" um die 8 Hauptflächen des Exzenterbolzens für die Flächenlast und Einspannung selektieren zu können.

1.4 Lagerung erzeugen

Erzeugen Sie mit Register "FEM-Projekt bearbeiten" und Menü "Randbedingungen" mit der Selektion "Flächenmodus" eine Lagerung in Z-Richtung an der Vorderseite des Quaders mit der Surface 1. In der Selectbox mit "Erzeugen" werden 144 Randbedingungen in Z-Richtung erzeugt.

1.5 Axialbelastung

Wählen Sie Register "FEM-Projekt bearbeiten" und Menü "Flächenbelastung".

In der nächsten Dialogbox wählen Sie Lastfall "1" sowie die Option "oder in N" und geben den Wert "1000000" und den Freiheitsgrad "senkrecht zur Fläche" ein.

Mit der Selektion "Flächenmodus" und Menü "Belastung erzeugen" erzeugen Sie eine Flächenlast durch Anklicken der Vorderseite des Zylinders mit der Surface 5. In der Selectbox mit "Erzeugen" werden 286 Flächenlasten erzeugt.

1.6. FEM-Analyse

Wählen Sie das Register "FEM-Analyse" und das Icon **Henry** um eine FEM-Berechnung mit dem MEANS-Solver oder dem Quick-Solver zu starten.

Datel Ansici	nt Netzgener	rierung FEM	-Projek	t bearbeiten	FEM-Anal	/se Ergebnisa
1. Statik	-	FEM-Solver wä	hlen	Infos zum FE Modell-Abm	M-Modell essungen	
FEM-Analys	e Fy	FEM-Ablau	f 🕞	Infos Strukt	urmodell 🕞	FEM-Assistent
FEM-Analy	/se				- C	I X
C:\pmiekt	a\avzenterholze	n\tet4 fem				
C. projekt		an verahem				
Jelect Ju	MEA	NS-Solver	С) Quick-Solve	r	
	S	chritt 1: FEM-S	olver	starten		
	Sch	hritt 2: Postproc	essing	starten		
		Schritt 3. Nachv				
FEM	-Solver auswäh	len		Ergebnisgröß	en einsteller	1
		1				1

1.6.1 MEANS-Solver

Es wird der von HTA-Software entwickelte FEM-Solver, der leider eine wesentlich höhere Rechenzeit als der Quick-Solver benötigt, gestartet.

I means1k	—		\times
File Edit View State Window Help			
MEANS Eingabedatei: C\projekte\EXZENT-1\tet4.fem Ergebnisdatei Temperatur Ffad fuer temporaere Dateien (*.tmp) C:\Users\info\AppData\Local\Temp		-) (•	83
Struktur mit 11573 Elementen und 2546 Knoten			
Liste Elementgruppen Anzahl Anzahl Anzahl Nummer 1-D-Elemente 2-D-Elemente 3-D-Elemente 1 0 0 11573			
Lastfall: 1 Iteration 0 means1k Verschiebungen (m) VX VY VZ Max .151700E-01 .152478E-01 .339998E+00 Min161633E-01155505E-02 Program Terminated with e	exit code 0	×	
Lastfall: 1 Iteration 0 Summe Auflagerkraefte (N) FX FY FZ Normal .161390E-08 .103850E-08100000E+07	Nein]	
Lastfall: 1 Iteration 0 maximale Spannungen Volumenelemente SIG-XX SIG-YY SIG-ZZ SIG-XY SIG-YZ Mises Max .135E+03 .135E+03 .942E+02 .323E+03 .288E+03 .809E+03 Min438E+03383E+03774E+03514E+02228E+03232E+03 .703E+00			
Lastfall: 1 Iteration 0 Mittelwerte in den Eckknoten SIG-XX SIG-YZ SIG-XY SIG-YZ SIG-XZ Mises Max .334E402 .329E402 .972E402 .397E402 .105E403 .144E403 .505E403 Min - 154E403 - 173E403 - 558E403 - 365E402 - 113E403 - 145E403 144F401 Punning			

1.6.2 Quick-Solver mit Tetraederelement TET4

Es wird der Quick-Solver mit dem linearen Tetraederelement TET4 gestartet.

Normal Precision	 show and solve with C3D4 (4-node linear tetrahedral elements) show C3D4 and solve intern with a refining mesh of 8 x C3D4 convert C3D4 -> C3D10 and show and solve with C3D10
Path for INP-Solver:	C:\Program Files\FEM-System_MEANS_V12\Debug\inpsolver\inpsolver64bit.e
Path for INP Files:	C:\projekte\exzenterbolzen\exzenter1.INP
	Select Solver In-Core-Solver Out-of-Core-Solver
	Start FEM-Solver with INP-Interface
	Settings Help + Infos Cancel

1.6.3 Quick-Solver mit Tetraederelement TET4X8

Es wird der Quick-Solver mit dem Tetraederelement TET4 gestartet, wobei intern jeder TET4 in 8 kleinere TET4s zerlegt wird und damit 8 mal genauer als obiger berechnet.

Middle Precision	 show and solve with C3D4 (4-node linear tetrahedral elements) show C3D4 and solve intern with a refining mesh of 8 x C3D4 convert C3D4 -> C3D10 and show and solve with C3D10 					
Path for INP-Solver: Path for INP Files:	Iver: C:\Program Files\FEM-System_MEANS_V12\Debug\inpsolver\inpsolver64bit.e					
	Select Solver In-Core-Solver Out-of-Core-Solver					
	Start FEM-Solver with INP-Interface					
	Settings Help + Infos Cancel					

1.6.4 Quick-Solver mit Tetraederelement TET10

Es wird der Quick-Solver mit dem quadratischen noch genaueren Tetraeder TET10 gestartet.

High Precision	 show and solve with C3D4 (4-node linear tetrahedral elements) show C3D4 and solve intern with a refining mesh of 8 x C3D4 convert C3D4 -> C3D10 and show and solve with C3D10
Path for INP-Solver:	C:\Program Files\FEM-System_MEANS_V12\Debug\inpsolver\inpsolver64bit.c Browser
Tatrior nu files.	Select Solver In-Core-Solver Out-of-Core-Solver
	Start FEM-Solver with INP-Interface
	Settings Help + Infos Cancel

1.7 Ergebnisauswertung

Wählen Sie das Register "Ergebnisauswertung" und das Icon um die Ergebnisse als Verformungs- oder Spannungsverteilung farblich darzustellen.

Buter Ansient Hetege	nerierung FEM-Proje	kt bearbeiten FEM-An	alyse Ergebnisauswer
💦 🖂 Ergebnisse auswerten	Verformungsfaktor	Legende 1 -	DXF-Postprocessing
M11	Knotenwerte picken	Diagramm 1 +	Value-Animation *
Ergeonisauswertung 12	Skalleren/Anzeigen 1 ₂	Legenden/Diagramme	DAF/Animation
Postprocessing		– – ×	<
Ergebnisse einladen			
O Verformungen auswe	ten Lastfall:	1 ~	
 Knotenspannungen 	gemittelt O Auflage	erkräfte <mark>auswerten</mark>	
O Elementspannungen	ungemittelt O Ergebr	iisdatei anzeigen	
. Lange de			
Raster-Genauigkeit	Verformund	gsfaktor/Wertebereich	
	Legende	und Farben einstellen	
1 2	Kostenwerte	nickan auchan aicham	
, , ,	+ Nioteriweite	picken, addren, addren	
Ergebnis-Komponente wä	nlen		
v.Mises-Verglei	chsspannung	~	

Es folgt ein Ergebnisvergleich mit den verschieden Tetraederelementen von MEANS V12:

- ♦ TET4
- ♦ TET4X8
- ♦ TET10

der aufzeigt, daß mit zunehmender Knotenanzahl pro Element die Ergebnisse genauer und die Rechenzeiten dagegen höher werden.

Gemittelte Knotenspannungen TET4

Ungemittelte Elementspannungen TET4

Gemittelte Knotenspannungen TET4X8

Gemittelte Knotenspannungen TET10

